Reimbursement Fraud di Era Digital: Tinjauan Sistematis Skema, Determinan, dan Kontrol Berbasis Risiko

  • Rizky Ridho Dwinanda Fakultas Ekonomi dan Bisnis, Universitas Airlangga, Surabaya
  • Anak Agung Gde Satia Utama Fakultas Ekonomi dan Bisnis, Universitas Airlangga, Surabaya https://orcid.org/0000-0002-2393-0601
Keywords: Blockchain, Healthcare Claims, Machine Learning, Reimbursement Fraud, Risk-Based Verification

Abstract

This paper synthesizes contemporary evidence on reimbursement fraud across healthcare and adjacent claim-based systems, addressing four questions on dominant schemes, multi-level drivers, control effectiveness, and the digital evolution of modus operandi. Reimbursement fraud persists amid expanding automation, creating financial leakage, operational inefficiency, and credibility risks for payers and providers. The study’s novelty lies in integrating behavioral, organizational, and institutional lenses with a process-stage mapping that aligns “scheme × claim-stage × control,” while proposing a minimum reporting set for evaluation metrics beyond raw accuracy. A PRISMA-guided systematic review of Scopus-indexed, peer-reviewed articles (2016—2025) identifies thirteen studies and codes schemes, stages, determinants, interventions, and outcomes for narrative synthesis. Findings indicate recurrent upcoding, phantom billing, unbundling, duplicate claims, and cost inflation, concentrated at adjudication and post-payment review when verification is fragmented. Risk-based pre-authorization, targeted verification, and post-payment audits work best within interoperable data governance, complemented by ML/AI analytics, document forensics, and, where appropriate, blockchain for audit integrity. Digitalization scales fraudulent attempts, requiring continuous monitoring, model refresh, and shadow testing to manage drift and adaptive behavior. The main implication is a shift from tool-centric fixes to adaptive, risk-based systems of control that report accuracy, detection latency, false-positive burden, and financial recovery for policy-relevant decisions.

Author Biography

Anak Agung Gde Satia Utama, Fakultas Ekonomi dan Bisnis, Universitas Airlangga, Surabaya

Agung is Doctor of Accounting, Faculty of Economics and Business, Universitas Airlangga, Indonesia. The research focus is accounting information systems, qualitative methods, sustainability, and Big Data. Expert in qualitative
analysis data processing NVIVO Software. Active as a speaker and moderator at national and international seminars. More than 100 publications in international and national journals, 11 book chapters. Associate Editor in several National Accreditation Journal, International Scopus indexed and national journal reviewers, and regular reviewers at various Top international conferences. Member of the Association Information Systems (AIS), Association of Qualitative Research Consultants (QRCA),
Asian Qualitative Research Association (AQRA), British Academy of Management in the UK (BAM), Indonesian Qualitative Researchers Association (IQRA), BAFA, AFAANZ, Chartered Accountants, Southeast Asia Research Academy (SEARA), etc. He is still working on several research projects, international collaborations, Supervisors of several international students in the Nusantara Project-AIBPM and publishing books.

References

Aikins, M., Tabong, P. T.-N., Salari, P., Tediosi, F., Asenso-Boadi, F. M., & Akweongo, P. (2021). Positioning the National Health Insurance for Financial Sustainability and Universal Health Coverage in Ghana: A Qualitative Study Among Key Stakeholders. PLoS ONE, 16(6 June). https://doi.org/10.1371/journal.pone.0253109

Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Amoli, M. M., Cunningham, P. J., Cassel, B., Carroll, N. W., & Dahman, B. (2025). MIPS Under Scrutiny: Exploring the Association Between Providers with Fraudulent Practices and Quality Metrics within MACRA’s Framework. Journal of Evaluation in Clinical Practice, 31(5). https://doi.org/10.1111/jep.70217

Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a Curated, High-Quality Bibliometric Data Source for Academic Research in Quantitative Science Studies. Quantitative Science Studies, 1(1), 377–386. https://doi.org/10.1162/qss_a_00019

Bandura, A. (1977). Self-Efficacy: Toward a Unifying Theory of Behavioral Change. Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-295X.84.2.191

Bandura, A. (1999). Moral Disengagement in the Perpetration of Inhumanities. Personality and Social Psychology Review, 3(3), 193–209. https://doi.org/10.1207/s15327957pspr0303_3

Bandura, A. (2002). Selective Moral Disengagement in the Exercise of Moral Agency. Journal of Moral Education, 31(2), 101–119. https://doi.org/10.1080/0305724022014322

Bandura, A., Barbaranelli, C., Caprara, G. V, & Pastorelli, C. (1996). Mechanisms of Moral Disengagement in the Exercise of Moral Agency. Journal of Personality and Social Psychology, 71(2), 364–374. https://doi.org/10.1037/0022-3514.71.2.364

Bauder, R. A., & Khoshgoftaar, T. M. (2017). Multivariate Outlier Detection in Medicare Claims Payments Applying Probabilistic Programming Methods. Health Services and Outcomes Research Methodology, 17(3–4), 256–289. https://doi.org/10.1007/s10742-017-0172-1

Bazyar, M., Yazdi-Feyzabadi, V., Rahimi, N., & Rashidian, A. (2020). What Are the Potential Advantages and Disadvantages of Merging Health Insurance Funds? A Qualitative Policy Analysis from Iran. BMC Public Health, 20(1). https://doi.org/10.1186/s12889-020-09417-7

Chandawarkar, R., Nadkarni, P., Barmash, E., Thomas, S., Capek, A., Casey, K., & Carradero, F. (2024). Revenue Cycle Management: The Art and the Science. Plastic and Reconstructive Surgery - Global Open, 12(7), e5756. https://doi.org/10.1097/GOX.0000000000005756

Chen, A., Blumenthal, D. M., & Jena, A. B. (2018). Characteristics of Physicians Excluded from US Medicare and State Public Insurance Programs for Fraud, Health Crimes, or Unlawful Prescribing of Controlled Substances. JAMA Network Open, 1(8). https://doi.org/10.1001/jamanetworkopen.2018.5805

Davies, M. R., Monssen, D., Sharpe, H., Allen, K. L., Simms, B., Goldsmith, K. A., Byford, S., Lawrence, V., & Schmidt, U. (2024). Management of Fraudulent Participants in Online Research: Practical Recommendations from a Randomized Controlled Feasibility Trial. International Journal of Eating Disorders, 57(6), 1311–1321. https://doi.org/10.1002/eat.24085

Dorminey, J., Scott Fleming, A., Kranacher, M. J., & Riley, R. A. (2012). The Evolution of Fraud Theory. Issues in Accounting Education, 27(2), 555–579. https://doi.org/10.2308/iace-50131

Drabiak, K., & Wolfson, J. (2020). Policy Forum What Should Health Care Organizations Do to Reduce Billing Fraud and Abuse? AMA Journal of Ethics, 22(3), E221–E231. https://doi.org/10.1001/AMAJETHICS.2020.221

Eddy, C. A., Liberman, A., & Falen, T. (2000). Medical Care Program Compliance—A Year 2000 Recipient Perspective of Medicare Claims. Health Care Manager, 19(2), 22–37. https://doi.org/10.1097/00126450-200019020-00006

Faunce, T. A., Urbas, G., & Skillen, L. (2011). Implementing US-Style Anti-Fraud Laws in the Australian Pharmaceutical and Health Care Industries. Medical Journal of Australia, 194(9), 474–478. https://doi.org/10.5694/j.1326-5377.2011.tb03066.x

Faux, M. A., Wardle, J. L., & Adams, J. (2015). No Payments, Copayments and Faux Payments: Are Medical Practitioners Adequately Equipped to Manage Medicare Claiming and Compliance? Internal Medicine Journal, 45(2), 221–227. https://doi.org/10.1111/imj.12665

Faux, M., Adams, J., Dahiya, S., & Wardle, J. (2022). Wading Through Molasses: A Qualitative Examination of the Experiences, Perceptions, Attitudes, and Knowledge of Australian Medical Practitioners Regarding Medical Billing. PLoS ONE, 17(1 January). https://doi.org/10.1371/journal.pone.0262211

Fei, Y., Fu, Y., Yang, D.-X., & Hu, C.-H. (2022). Research on the Formation Mechanism of Health Insurance Fraud in China: From the Perspective of the Tripartite Evolutionary Game. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.930120

Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., & Kohane, I. S. (2019). Adversarial Attacks on Medical Machine Learning. Science, 363(6433), 1287–1289. https://doi.org/10.1126/science.aaw4399

Gaitonde, R., Oxman, A. D., Okebukola, P. O., & Rada, G. (2016). Interventions to Reduce Corruption in the Health Sector. Cochrane Database of Systematic Reviews, 2016(8). https://doi.org/10.1002/14651858.CD008856.pub2

Gill, A. S., Menjivar, D., Shipman, P., Sumsion, J., Error, M., & Alt, J. A. (2023). Healthcare Provider Feedback Improves Outpatient E/M Billing and Coding in Otolaryngology Clinics. OTO Open, 7(1). https://doi.org/10.1002/oto2.20

Golden, J. A. (2017). Deep Learning Algorithms for Detection of Lymph Node Metastases from Breast Cancer Helping Artificial Intelligence be Seen. JAMA, 318(22), 2184–2186. https://doi.org/10.1001/jama.2017.14580

Heath, J. (2020). Ethical Issues in Physician Billing under Fee-For-Service Plans. The Journal of Medicine and Philosophy: A Forum for Bioethics and Philosophy of Medicine, 45(1), 86–104. https://doi.org/10.1093/jmp/jhz029

Hennig-Schmidt, H., Jürges, H., & Wiesen, D. (2018). Dishonesty in Health Care Practice: A Behavioral Experiment on Upcoding in Neonatology. Health Economics (United Kingdom), 1–20. https://doi.org/10.1002/hec.3842

Hoelscher, J., & Shonhiwa, T. (2023). J&S Publisher Problems: A Diagnostic Analytics Case Exploring Employee Expense Reimbursement. Journal of Emerging Technologies in Accounting, 20(1), 213–221. https://doi.org/10.2308/JETA-2021-011

Kaddi, S. S., & Patil, M. M. (2023). Ensemble Learning Based Health Care Claim Fraud Detection in an Imbalance Data Environment. Indonesian Journal of Electrical Engineering and Computer Science, 32(3), 1686–1694. https://doi.org/10.11591/ijeecs.v32.i3.pp1686-1694

Kronfol, N., Khalife, J., Romanos, J., Makouk, J., Noun, P., & Ammar, W. (2014). Observations on the Ministry of Public Health Program of Support to the Hospitalization of Patients in Lebanon. Journal Medical Libanais, 62(1), 33–39. https://doi.org/10.12816/0002625

Kuunibe, N., Lohmann, J., Schleicher, M., Koulidiati, J.-L., Robyn, P. J., Zigani, Z., Sanon, A., & De Allegri, M. (2019). Factors Associated with Misreporting in Performance-Based Financing in Burkina Faso: Implications for Risk-Based Verification. International Journal of Health Planning and Management, 34(4), 1217–1237. https://doi.org/10.1002/hpm.2786

Lorence, D. P., & Richards, M. (2002). Variation in Coding Influence Across the USA. Risk and Reward in Reimbursement Optimization. Journal of Management in Medicine, 16(6), 422–435. https://doi.org/10.1108/02689230210450981

Lorence, D. P., & Spink, A. (2002). Regional variation In Medical Systems Data: Influences on Upcoding. Journal of Medical Systems, 26(5), 369–381. https://doi.org/10.1023/A:1016405214914

Lyles, M. A. (2013). Teaching Physicians about Fraud and Program Integrity. Academic Medicine, 88(8), 1061–1063. https://doi.org/10.1097/ACM.0b013e318299efc1

Mackey, T. K., Miyachi, K., Fung, D., Qian, S., & Short, J. (2020). Combating Health Care Fraud and Abuse: Conceptualization and Prototyping Study of a Blockchain Antifraud Framework. Journal of Medical Internet Research, 22(9). https://doi.org/10.2196/18623

Matloob, I., Khan, S., Rahman, H. ur, & Hussain, F. (2020). Medical Health Benefit Management System for Real-Time Notification of Fraud Using Historical Medical Records. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/app10155144

McGee, J. A., & Byington, J. R. (2008). Beware Expense Reimbursement Schemes! Journal of Corporate Accounting and Finance, 20(1), 9–13. https://doi.org/10.1002/jcaf.20444

Naib, P., Gupta, S. D., & Chandrashekar, S. (2025). Study of Provider Perceptions of Types and Extent of Fraud in Health Insurance and Factors Influencing Ethics in Healthcare Provisioning: Learnings from the World’s Largest Public Health Insurance Scheme in India. Journal of Health Management, 27(1), 86–92. https://doi.org/10.1177/09720634241304983

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. In The BMJ (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n71

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., Mcdonald, S., … Mckenzie, J. E. (2021). PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. In The BMJ (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n160

Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. In Publications (Vol. 9, Issue 1). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/publications9010012

Roffia, P., & Poffo, M. (2025). Revisiting the Fraud Triangle in Corporate Frauds: Towards a Polygon of Elements. Journal of Risk and Financial Management, 18(3). https://doi.org/10.3390/jrfm18030156

Ruhnka, J. C., Gac, E. J., & Boerstler, H. (2000). Qui Tam Claims: Threat to Voluntary Compliance Programs in Health Care Organizations. Journal of Health Politics, Policy and Law, 25(2), 283–308. https://doi.org/10.1215/03616878-25-2-283

Sanghavi, P., Jena, A. B., Newhouse, J. P., & Zaslavsky, A. M. (2021). Identifying Outlier Patterns of Inconsistent Ambulance Billing in Medicare. Health Services Research, 56(2), 188–192. https://doi.org/10.1111/1475-6773.13622

Satou, G. M., Rheuban, K., Alverson, D., Lewin, M., Mahnke, C., Marcin, J., Martin, G. R., Mazur, L. S., Sahn, D. J., Shah, S., Tuckson, R., Webb, C. L., & Sable, C. A. (2017). Telemedicine in Pediatric Cardiology: A Scientific Statement from the American Heart Association. Circulation, 135(11), e648–e678. https://doi.org/10.1161/CIR.0000000000000478

Schofield, M. (2021). Regulatory and Legislative Issues on Telehealth. Nutrition in Clinical Practice, 36(4), 729–738. https://doi.org/10.1002/ncp.10740

Schonberger, R. B., Dutton, R. P., & Dai, F. (2016). Is There Evidence for Systematic Upcoding of ASA Physical Status Coincident with Payer Incentives? A Regression Discontinuity Analysis of the National Anesthesia Clinical Outcomes Registry. Anesthesia and Analgesia, 122(1), 243–250. https://doi.org/10.1213/ANE.0000000000000917

Sommersguter-Reichmann, M., Wild, C., Stepan, A., Reichmann, G., & Fried, A. (2018). Individual and Institutional Corruption in European and US Healthcare: Overview and Link of Various Corruption Typologies. Applied Health Economics and Health Policy, 16(3), 289–302. https://doi.org/10.1007/s40258-018-0386-6

Soneji, P. T. (2022). The Fraud Theories: Triangle, Diamond, Pentagon. International Journal of Accounting, Auditing and Performance Evaluation, 18(1), 49–60. https://doi.org/10.1504/IJAAPE.2022.123301

Studdert, D. M., Mello, M. M., & Brennan, T. A. (2004). Financial Conflicts of Interest in Physicians’ Relationships with the Pharmaceutical Industry - Self-Regulation in the Shadow of Federal Prosecution. New England Journal of Medicine, 351(18), 1891–1900. https://doi.org/10.1056/NEJMlim042229

Sun, J., Wang, Y., Zhang, Y., Li, L., Li, H., Liu, T., & Zhang, L. (2024). Research on the Risk Governance of Fraudulent Reimbursement of Patient Consultation Fees. Frontiers in Public Health, 12. https://doi.org/10.3389/fpubh.2024.1339177

Tan, K.-L., Hii, I. S. H., Huang, Y., & Yan, Y. (2024). Reducing Dishonest Disclosures during Expense Reimbursement: Investigating the Predictive Power of the Technology Acceptance Model with a Corporate Governance Perspective. Journal of Accounting and Organizational Change, 20(5), 874–895. https://doi.org/10.1108/JAOC-01-2023-0019

Vassiliou, A. G., Georgakopoulou, C., Papageorgiou, A., Georgakopoulos, S., Goulas, S., Paschalis, T., Paterakis, P., Gallos, P., Kyriazis, D., & Plagianakos, V. (2020). Health in All Policy Making Utilizing Big Data. Acta Informatica Medica, 28(1), 65–70. https://doi.org/10.5455/AIM.2020.28.65-70

Villegas-Ortega, J., Bellido-Boza, L., & Mauricio, D. (2021). Fourteen Years of Manifestations and Factors of Health Insurance Fraud, 2006–2020: A Scoping Review. Health and Justice, 9(1). https://doi.org/10.1186/s40352-021-00149-3

Vyas, K. S., Snapp, W. K., Rinker, B. D., & Vásconez, H. C. (2016). A Critical Analysis of the 2012 Centers for Medicare and Medicaid Services Provider Use and Payment Database. Plastic and Reconstructive Surgery, 137(2), 462–473. https://doi.org/10.1097/01.prs.0000475779.30536.1b

Wynia, M. K., Cummins, D. S., VanGeest, J. B., & Wilson, I. B. (2000). Physician Manipulation of Reimbursement Rules for Patients: Between A Rock and a Hard Place. JAMA, 283(14), 1858–1865. https://doi.org/10.1001/jama.283.14.1858

Zerzan, J., Stearns, S., & Hanson, L. (2000). Access to Palliative Care and Hospice in Nursing Homes. JAMA, 284(19), 2489–2494. https://doi.org/10.1001/jama.284.19.2489

Zhang, G., Zhang, X., Bilal, M., Dou, W., Xu, X., & Rodrigues, J. J. P. C. (2022). Identifying Fraud in Medical Insurance Based on Blockchain and Deep Learning. Future Generation Computer Systems, 130, 140–154. https://doi.org/10.1016/j.future.2021.12.006

Published
2025-11-10